

High Performance Software Library

CyberMotion Functions Library

The CyberMotion library is written in C, and supports the Microsoft Visual C++ development environment. It contains high-level procedures that take advantage of the PMD C-Motion low-level functions.

This library tremendously simplifies the development of user applications. It frees users from having to know the PMD motion processor functions in depth, which are tedious and time-consuming to work with. The library routines can be used in the Windows or DOS environments, and allow the system designer to focus on the graphical user interface. It provides a full set of functions to develop various controlled mechanical systems.

The CyberMotion routines are organized by categories. They perform the floating point calculations necessary for advanced motion of mechanical systems, set various system variables, and provide information about system behavior. The library supports the MC2xxx series of PMD motion processors.

Instructions Summary by Functional Category

Initialization Procedures

ResetBoard Hardware reset.

InitializeMotion Software system initialization.

System Configuration

SetEncoderCountsPerRev Set a number of incremental quadrature encoder counts per revolution. GetEncoderCountsPerRev Get a number of incremental quadrature encoder counts per revolution.

SetUnits Set the system of units – English, metric or encoder counts.

GetUnits Get the currently defined system of units.

UnitsRatioDefine a ratio between encoder counts and linear units.SetUnitsToCountsSet a ratio between encoder counts and linear units.GetUnitsToCountsGet a ratio between encoder counts and linear units.

CountsVelocityDownload encoder counts velocity calculated from linear units.CountsAccelDownload encoder counts acceleration calculated from linear units.SetPitchSet a pitch or mechanical gear ratio between rotary and linear motion.

GetPitch Get the currently defined pitch or mechanical gear ratio.

Controller Status

GetChipsetStatus Get the current axis status. ClearChipsetStatus Clear the current axis status.

Motion Status

InMotionCheck if an axis is still running.AllInMotionCheck if all axes are still running.

Servo Filter Parameters

SetFilterParamsSet servo filter parameters.GetFilterParamsGet servo filter parameters.

DownloadFilterGainsDownload servo filter coefficients to the motion controller board. **UploadFilterGains**Upload servo filter coefficients from the motion controller board.

Filter Feedback Loop

CloseAxisLoop Clear the motion error and close the feedback loop.

OpenAxisLoop Open the feedback loop.

ServoOn Clear the motion error and close the feedback loop for all axes.

ServoOff Open the feedback loop for all axes.

Axes Control

GetAxesQty Get a number of axes from the controller board.

SetAxesQty Set the current number of axes. **GetNewAxesQty** Get the current number of axes.

Axis Change an axis type from a character to a number.
CharAxis Change an axis type from a number to a character.

MC1xxx series only

GetCurrentAxis Get the current axis number from the controller.

SetAxisSet the controller's current axis defined by a character. **IntAxis**Set the controller's current axis defined by a number.

MC2xxx series only

GetPMDAxis Change an axis type from a number to the C-Motion type.

GetPMDAxisHandleChange an axis type from a number to the C-Motion axis handle.

Change an axis type from a character to the C-Motion axis handle.

Position Control

AxisActICountsPos Upload actual encoder counts position.

AxisActIPos Upload actual linear position.

AxisActlCountsPosError Upload the actual encoder counts position error.

AxisActlPosError Upload the actual linear position error.

ZeroAxis Zero the position, velocity, acceleration and following error.

ZeroAllAxes Zero the position, velocity, acceleration and following error of all axes.

Trajectory Control

SetVelocitySet linear velocity.GetVelocityGet linear velocity.SetAccelerationSet linear acceleration.GetAccelerationGet linear acceleration.

Motion Profile Mode

SetProfileModeSet the motion profile mode.GetProfileModeGet the motion profile mode.SynchronizeChipsetProfileClear the axis following error.

DownloadProfileMode Download the motion profile mode to the controller.

Profiled Moves

MoveToPositionIntrptBegin a profiled move in counts ended by the interrupt signal.

MoveToPositionPoll
Begin a profiled move in counts. Loops while in motion.

MoveOneAxisBegin a profiled move in linear units ended by the interrupt signal.

MoveAxesBegin a profiled move of all axes. **ExecTrapezoidalMove**Perform a trapezoidal profile move.

MoveEncoderAxis Move an axis to test the encoder feedback.

Interpolated Moves

CircularIntrpl Execute 2-axis circular interpolated move. **LinearIntrpl** Execute 2 axis linear interpolated move.

Jog Moves Control

CountsJogVelocity Download encoder counts jog velocity calculated from linear units.

SetJogContinuousSet the jog mode as non- or continuous.GetJogContinuousReturns TRUE if the jog mode is continuous.SetJogBySet the jog mode as non- or incremental.GetJogByReturns TRUE if the jog mode is incremental.

SetJogDestinationSet a jog position value.GetJogDestinationGet a jog position value.SetJogIncrementSet a jog increment value.GetJogSpeedGet a jog increment value.SetJogSpeedSet a jog feed rate value.GetJogSpeedGet a jog feed rate value.

SetJogSpeedOverrideSet a percentage change of the jog feed rate value. **GetJogSpeedOverride**Get a percentage change of the jog feed rate value.

Jog Moves

STARTJogging Begin a jog move in the given direction.

STOPJogging Stop a jog move.

Stop Motion

CloseMotion Stop the motion, shut off motor outputs and zero motion parameters. **AxisAbruptStop** Bring an axis to the immediate stop.

axis to the infinediate stop.

Motion Errors

GetFollowingError Test if an axis move caused the position error. **SetMotionErrorFlag** Set the motion error flag for all axes.

GetMotionErrorFlag Get the state of the motion error flag.

Motor Output

GetMotorType Get a motor type controlled by the motion controller.

MC1xxx series only

SetOutputMC1 Send the motor output signal mode to the controller board.

SetOutSignalModeMC1 Set the motor output signal mode.

SetOutSignalModeMC1 Set the motor output signal mode. GetOutSignalModeMC1 Get the motor output signal mode.

MC2xxx series only

SetOutputMC2 Send the motor output signal mode to the controller board.

SetOutSignalModeMC2 Set the motor output signal mode. GetOutSignalModeMC2 Get the motor output signal mode.

Software Limits

SetSoftLimitMinusSet the negative software position limit.GetSoftLimitMinusGet the negative software position limit.SetSoftLimitPlusSet the positive software position limit.GetSoftLimitPlusGet the positive software position limit.

SetSoftOvertravelMinus
GetSoftOvertravelMinus
SetSoftOvertravelPlus
GetSoftOvertravelPlus
GetSoftOvertravelPlus
GetSoftOvertravelPlus
GetSoftOvertravelPlus
GetSoftOvertravelPlus
SoftLimits

Set the logical state of the negative software position limit.
Set the logical state of the positive software position limit.
Get the logical state of the positive software position limit.
Check if an axis remains within the software limits.

Hardware Limits

SetHighHardLmtMinusSet the active state of the negative hardware limit switch.

GetHighHardLmtMinus
Get the active state of the negative hardware limit switch.

SetHighHardLmtPlus
GetHighHardLmtPlus
Set the active state of the positive hardware limit switch.
Get the active state of the positive hardware limit switch.
SetLimitsSense
GetLimitsSense
Get the active state of the hardware limit switches for all axes.
Get the active state of the hardware limit switches for all axes.
ActivateLimitSwitches
Activate or deactivate axis hardware limit switches.

SetLimitOn Activate or deactivate all axes hardware limit switches.

GetLimitOn Get the limit switches state from the sensing mechanism.

ResetHrdLimits Reset the active state of the hardware limit switches.

Home Inputs

SetHomingInPlus

GetHomingInPlus

Returns TRUE when an axis is homing in the positive direction.

SetHomeSwitch

GetHomeSwitch

Get a switch type used as the homing input.

Homing Parameters

SetHomeOffsetSet offset position from the home position.GetHomeOffsetGet offset position from the home position.SetHomingSpeedSet homing move speed.GetHomingSpeedGet homing move speed.SetOffsetSpeedSet offset move speed.GetOffsetSpeedGet offset move speed.

Homing Procedure

GetHomingMode Check if the system is performing the homing procedure.

HomeAxis Set an axis as the currently homing axis.

SetAxesHomed Set TRUE when the axis homing process is finished. **GetAxesHomed** Check if all axes finished the homing procedure.

Counter/Timer

MilisecDelay Define a delay in milliseconds.

GetChipsetSampleTimeUpload the servo filter sample rate from the controller. **SetChipsetSampleTime**Download the servo filter sample rate to the controller.

CNC Functions

GetAbsolutePositionGet absolute position.TurnSpindleOffTurn the spindle motion off.SetSpindleSpeedSet a spindle rpm value.GetOffsetGet offset registers values.

SetOffsetIndex Set an index of the D Registers array.

SetDRegistersSet D Registers values.GetDRegistersGet D Registers values.SetToolOffsetSet tool offset position.GetToolOffsetGets tool offset position.DwellDwell for the specified time.

Miscellaneous

SetControllerInstalledSet TRUE if the motion controller board is plugged in.GetControllerInstalledReturns TRUE if the motion controller board is plugged in.SetChipsetGenSet the PMD motion processor generation to MC1xxx or MC2xxx.GetChipsetGenGet the PMD motion processor generation as MC1xxx or MC2xxx.

GetChipsetVersion Get the PMD motion processor version. **GetLibraryVersion** Get the CyberMotion library version.